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J.  Phys.: Condens. Matter 2 (1990) 7687-7698. Printed in the UK 

Critical amplitudes for critical wetting with 
short-ranged forces: the approach to d = 3- 

A 0 Parry and R Evans 
H H Wills Physics Laboratory, University of Bristol, Bristol BS8 lTL,  UK 

Received 31 May 1990 

Abstract. Critical wetting in fluids with short-ranged forces is investigated for dimensions 
d G 3. By combining statistical mechanical sum rules and capillary-wave theory with a 
standard scaling hypothesis for the singular part of the interfacial tension we show that, 
whilst the thickness 1 of the wetting film and the interfacial roughness E ,  diverge with the 
same critical exponent f o r d  < 3, the critical amplitudes are such that the ratio l / E -  diverges 
as (3 - d)-’/2 in the limit d-* 3-. Our analysis suggests that the extent of the critical regime 
becomes vanishingly small in the same limit and provides further insight into the crossover 
f romd < 3, astrong-fluctuation regime withuniversalexponents. t o d  = 3, where 1 - E:  and 
non-universal exponents occur. 

1. Introduction 

Consider an adsorbing planar substrate (wall) in contact with a reservoir of gas at fixed 
chemical potential p and temperature T. The wall exerts an external potential Vext(z), 
with z normal to the wall, on molecules in the fluid which is sufficiently attractive to 
adsorb a liquid film of thickness 1. Suppose that in bulk two-phase (liquid-gas) coexist- 
ence, where p = p i t (  T ) ,  ldiverges continuously as the temperature is increased towards 
the wetting transition temperature T,. Then a macroscopically thick film of liquid 
intrudes between the gas and the wall, corresponding to a phase transition from partial 
to complete wetting by liquid. The surface tension a,, of the wall-gas interface is then 
the sum of the wall-liquid surface tension awl and the (free) liquid-gas surface tension 
q,, i.e. a,, = owl + al,; T 5 T,. Such a critical wetting transition may also be induced 
by increasing the strength E of the attractive part of Vext(z) at fixed T and p = p & ( T ) .  

Critical wetting transitions have attracted much attention in recent years; see the 
reviews by Sullivan and Telo da Gama (1986) and by Dietrich (1988). The divergence 
of the film thickness and the transverse correlation length 511 and the singular contribution 
E(’) to the wall-gas tension are characterised by the critical exponents 

1 = ClEb a&-’’ ( la )  

where cl, cll and c, are dimensionless critical amplitudes, i j b  is the bulk (liquid) correlation 
length and 8~ = - measures the deviation of the temperature or the field 
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strength from that at the transition eT. It is the build-up of capillary-wave-like fluctuations 
in the edge of the film that leads to the divergence of Ell, Such fluctuations give rise to an 
Ornstein-Zernike type of behaviour of the (transverse) structure factor in the liquid- 
gas part of the interface, i.e. the exponent analogous to q iszero for all (bulk) dimensions 
d. 511 may be defined rigorously in terms of the ratio of the second to zeroth moments of 
the transverse structure factor or pair correlation function in the vicinity of the liquid- 
gas edge of the wetting film (see later). For d s 3 the divergence of 51, is accompanied by 
the divergence of the interfacial roughness EL, which is a measure of the interfacial 
width, i.e. 

= C l c b  (14 

The divergence of CL is related to the divergence of 511 by standard capillary-wave theory 
(see, e.g., Bedeaux and Weeks 1985) 

finite d > 3  

d = 3  (2) 
d < 3  

where = kgT/4nal,5~ is a dimensionless parameter, and K(d) is a function of d. 
Of special interest is the case of short-ranged wall-fluid and fluid-fluid forces for 

which the upper critical dimenision d, = 3. The mean-field exponents are PS = 0(ln), 
vll = 1 and as = 0 (discontinuity). Approximate linear renormalisation group (RG) 
studies of effective interfacial Hamiltonians predict non-universal exponents for d = 3. 
To leading order the RG results (Brezin et af 1983a, b, Fisher and Huse 1985) are 

v,1 = (1 - 0)-1 w s 1 

p s = l  V I = =  0 > 2 .  

Monte Carlo results for the same interfacial Hamiltonian (Gompper and Kroll 1988) 
show that  VI^ is U dependent and are consistent with (3) for the small values of w at which 
the simulations were performed. 

For d = 2, Abragam’s (1980) exact solution for a square Ising lattice with a contact 
surface field exhibiting a critical wetting transition gives the exponents 

P s =  1 VI/ = 2 mS = 0 (discontinuity) d = 2. (4) 
The same d = 2 results have been found in exact treatments of interfacial Ham- 

iltonians (see, e.g., Sullivan and Telo de Gama 1986, Dietrich 1988). More recently a 
non-linear functional RG treatment (Lipowsky and Fisher 1986,1987) has demonstrated 
that the linear RG approximation fails fo rd  < 3. Whilst earlier linear RG studies (Kroll 
and Lipowsky 1982) indicated that only first-order wetting transitions could occur for 
2 < d < 3, the analysis of Lipowsky and Fisher indicates that for d < 3 a critical wetting 
transition does exist and this has d-dependent critical exponents. Their numerical results, 
obtained from iterations of the RG transformation, predict that vil(d) diverges as a‘+ 3-. 
They noted that an excellent fit to their data for vll is provided by the formula 
vi1 = (3 - d)-l’*{ln[3/(3 - d)]1’2 + 3.65(3 - d)}’ /* 2 s d s 2.975. ( 5 )  
It is striking that, as d+ 3-, there appear to be critical exponents for critical exponents! 
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In addition, the non-linear RG analysis reveals an unusual fixed-point bifurcation prop- 
erty at d = 3 which suggests that non-universality in this dimension might be described 
correctly (at least for small U )  by the linear RG treatment. Although the non-linear 
functional RG is certainly a powerful technique, it has not yet yielded a complete 
description of critical wetting as d+ 3- or for d = 3 (Fisher 1989). 

It is the purpose of the present article to investigate further the nature of critical 
behaviour as d + 3-. In particular, we are concerned with the relationship between 1 
and EL in this limit. Using a standard scaling hypothesis for the singular part X(’) of the 
wall-gas interfacial tension together with some recently derived statistical mechanical 
sum rules, appropriate to a realistic many-body Hamiltonian, and thermodynamic 
requirements (Evans and Parry 1989, hereafter referred to as I), we derive a relationship 
between the critical amplitudes cI and cll appearing in (1). Our analysis shows that in 
addition to the diverging critical exponents, as d+ 3 - ,  the ratio of length scales 1/EL 
should diverge in the same limit. More precisely, we conclude that 

l /gl  - ( 3  - d)-l’’ d+ 3 - .  (6) 
Thus the magnitude of the interfacial wandering gL decreases relative to that of the 

wetting film thickness 1 as the bulk dimension d increases towards d = 3. In order to 
appreciate the significance of this result we recall that scaling, sum rule (see I) and RG 
calculations (Brezin et a1 1983a, b, Fisher and Huse 1985) conclude that to leading order, 
exactly at the upper critical dimension, 

1 -  E? d = d , = 3  (7) 
for critical wetting with short-ranged forces. The scaling hypothesis also yields (see e.g., 
Sullivan and Telo da Gama 1986) the well known exponent relation 

2 - a, = 2v1, - zp,. (8) 
This relation is analogous to the Rushbrooke (in)equality of bulk critical phenomena 

and can also be derived from thermodynamic arguments; see I .  When combined with 
the hyperscaling relation 

2 - CU, = ( d  - l)vlI (9) 

Ps = ( 3  - d ) q / 2  d < 3. (10) 

(8) implies that 

Making use of the capillary-wave relation (2) it follows that, in the strong-fluctuation 
regime (d  < d,) , /Is = I, and 

1 -  51 d < 3 .  (11) 
Thus ford < 3 the interfacial roughness diverges in the same way as the film thickness, 

whereas ford = 3 the roughness diverges much more slowly than the film thickness. The 
present article provides a means of understanding the crossover from one type of 1 versus 
EL relationship to another as d-, 3-. Since p, = v i  remains valid for all d < 3 ,  l/gL = 
cI /cL for d < 3 and ( 6 )  reflects directly the divergence of the ratio of critical amplitudes 
in the limit d + 3-.  

Our paper is arranged as follows: in section 2 we recall some relevant sum rules 
and thermodynamic relations from our earlier paper I. These allow us to introduce a 
transverse correlation length for particles located near the wall. Assuming that 
hyperscaling is valid for all dimensions less than 3 ,  we argue that the ratio of correlation 
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lengths Er/Ell should be O(1) and remain well behaved as d+ 3-. In section 3, we 
combine a standard scaling hypothesis for Z(’) with thermodynamic relations from section 
2 and standard capillary-wave theory to deduce a formula for q/cl that depends on q ( d )  
and the coefficient Q of hyperscaling, as well as the ratio gr/gl~. Provided that the last 
two quantities are non-singular as d+ 3-, we obtain (6) for any vl1(3-) > 4, including a 
divergent vll(3-). If vll(3-) = 4, a result derived in I via Gaussian unfreezing of capillary- 
wave fluctuations on a mean-field interface, (6) is not valid and we find the less satis- 
factory result that 1/5, remains constant as d+ 3-. We also discuss the nature of the 
divergences of the individual amplitudes cI and cl and develop a criterion for the size of 
the critical regime for critical amplitudes. Our criterion implies that this size vanishes as 
d + 3- if the exponent Ps + 0. Section 4 contains concluding remarks. 

2. Sum rules, thermodynamics and hyperscaling 

We begin by recalling some of the main results of I. There exists a number of exact 
statistical mechanical sum rules which relate derivatives of thermodynamic functions 
(surface tension and adsorption) to transverse moments of the density-density cor- 
relation function 

G(ri r2) P ( ~ I ) P ( ~ z ) ~ ( ~ I  3 ~ 2 )  + 6(r1 - r2 )~ ( r i )  (12) 
where p( r )  = p(z) is the equilibrium one-body density and h ( r l ,  r2) is the total pairwise 
distribution function. The appropriate moments of G are defined via the transverse 
Fourier transform 

G(zl , z 2 ;  Q) = dR exp(iQ - R) G(zl , z 2 ;  R )  (13) 

(14) 

J^ 
= Go(z l ,  z 2 )  + Q2G2(z1,  z 2 )  + . . .. 

Here R and Q are transverse wavevectors, parallel to the interface. Two important 
quantities for wetting phenomena are the surface excess grand potential B per unit area 
(surface tension) and the adsorption, or coverage, r. The latter serves to define the 
thickness 1 of the wetting film of liquid, say 

= IoK d z  [P(z> - Pbl (15a) 

= (PI - PgY (15b) 
where Pb, p1 and pg are the bulk and coexisting liquid and gas number densities, respect- 
ively. We have assumed that VeXt is infinitely repulsive for z < 0 so that p(z)  = 0 for 
z < 0. r is related to B by the Gibbs adsorption equation 

r = - (a~/ap) , .  (16) 
Differentiating WRT ,U yields the surface susceptibility sum rule 

where the subscript b refers to bulk properties. Henderson (1986) has derived some 
illuminating sum rules by differentiating r and U WRT E ,  the strength of the attractive 
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part V,(z) of Vex,. Assuming that Vex, is defined so that dV,,,(z>/d~ = V,(Z)/E is inde- 
pendent of E it is possible to show (Henderson 1986) that 

and 

These sum rules are formally exact. They are extremely useful since they relate singular 
behaviour in G0(z1, z2 )  to that of thermodynamic quantities. In I we argued that (18) 
and (19) could be used to determine the singular contributions to G when one or both 
particles are located near the wall (z = 0): 

Ging ( U ,  U) - - ( k ~  T/U 2, ( d2Z")/d & 2 ) p ,  (20a) 

G"dg(a, Z) .- ( k ~ T / a )  P'(Z)(dl/aE)p,r z - 1  (20b) 

G "' ( U ,  U) - (kB T/u 2 ,  aig( 8 l / a  E )  i. T .  (20c) 

Here a is a microscopic length which is of the same order as the range of V,(z) and the 
prime denotes differentiation WRT 2. Note that E(') 6 0 and G$"g(a, a)  is positive. 

These results complement the well known result for G(zl, z 2 ;  Q) that is valid at small 
Q when both particles are near the liquid-gas edge of the wetting film: 

G(zi, ~ 2 ;  Q) - Go(zi> z2)(1 + EiQ2)-' 

GO(Z1, z2) - kBTP'(zl)P'(z2)E~/ai~ z1, z2 - 1. (21b) 

(22a) 6 i  = --G2(Zl,Z2)/GO(ZI, z2) 

E t  - ~l,(Pl - Pgr2(dWw)T. (22b) 

Erz E -Gi"g(~ ,  u ) / G ~ " ~ ( u ,  U) 

- -a[g(dl/d E ) ; .  T/(d  2Z("/d E 2 ) p ,  T .  

z1, z2 - 1 

with 

The transverse correlation length appearing in (21) is defined by 

21, z2 - 1. 

Using (21b) in (17) we obtain 

By analogy the sum rule results (20) can be used to determine a transverse correlation 
length when both particles are near the wall 

(23a) 

(23b) 

It follows from the definitions of the exponents and the exponent relation (8) that 
E r  - ~ E - ' I I .  That is, the transverse correlation length diverges, for particles at the wall, 
with the same exponent as for particles in the liquid-gas interface. This startling mani- 
festation of capillary-wave-like fluctuations is not associated with interfacial roughness. 
Explicit mean-field calculations (see I) have shown that Ell, as defined by (22), is inde- 
pendent of zl, z2 for zl, z2, P a and recall that in mean-field theory remains finite. 
The physically appealing interpretation of these results is that, for critical wetting, the 
transverse correlation length is essentially independent of particle position so that a 
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simple 0 -Z contribution to G(z, ,  z2;  Q) is present throughout the inhomogeneous 
fluid. We might suppose, therefore, that the singular contribution to G has the form 

GSing(2i, 22; Q) - Go(zi, ~ 2 ) ( 1  + 5SQ2)-' zl, z2 3 a (24) 
at small Q. Such a form necessarily implies that Q" = El/. All we shall require is the 
weaker assumption that @/Ell is 0 (1)  and we justify this below. 

In I we also introduced an important thermodynamic requirement for critical wetting. 
Treating E as a thermodynamic field, we derived a formal analogue of the bulk cp-cv 
relation. Here we merely quote the result 

( W W p , T  - ( d @ / W r , T  = (WW2,, T ( w w ; , \  (25) 

0 = -(aa/aE)p,J. (26) 

where 

As mentioned in section 1, (25) provides a direct and rigorous route to the derivation of 
the exponent relation (8). We shall make use of (25) in the next section, introducing a 
scaling hypothesis for the singular part of cr. 

Hyperscaling for the present problem can be expresed as 

Z(s)/kBT = -Qgi(d-l) (27) 
where Q(>O) is a dimensionless coefficient. If, for a given d,  Q is a universal constant, 
critical wetting can be said to exhibit hyperuniversality. (Note that (27) implies (9).) 
The value of Q can be ascertained for several models. An exact treatment of a continuum 
interfacial (solid on solid) Hamiltonian in d = 2 yields (Burkhardt 1989) 

d = 2  (28) Z(S)/k, T = - 5 - 1 I1 
so that Q = 1 in this case. Linear RG results imply that Q depends on the value of o when 
d = 3. Using the methods of Brezin et a1 (1983a, b) it is easy to show that 

-(8no) -1gy os4 d = 3  (29a) 

-(n%%%)-'tF2 4 < ~ < 2  d = 3  (29b) 

- (8n) - ' 5 / 1 2  o > 2  d = 3 .  (29c) 

It is significant that the small-w result (29a) is identical with the mean-field result. 
That is, an explicit calculation, for the Sullivan (1979) model (see I) in three dimensions 
and for a'slab' model, in which a slab approximation is made for the density profile of 
the film, for any dimension, yields 

Z("/k,T = (-a,g5;/2kBT) E r 2  mean field. (30) 
In the strongest-fluctuation regime (o > 2) ford = 3, Q is independent of U .  Given 

that this is also the case for d = 2 it is tempting to speculate that hyperuniversality is a 
generic feature of the strong-fluctuation regime of critical wetting. Although we do not 
know how Q varies with dimension d ,  we do not expect Q(d) to exhibit any pathological 
behaviour as d + 3-. 

We are now in a position to reconsider the ratio of correlation lengths Er/El, .  Com- 
bining (30) and (23b) we find, using results in I,  that, for the Sullivan model, E r  = 511. 
On theotherhand (seeI) anexplicit calcalation ofthemoments Gt"g(0,O) and G?"g(O, 0) 
and the definition (23a) gives E r  = a1E11, where al is a dimensionless inverse correlation 
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length which is O(1). This exercise gives us confidence that (23b) is a reliable approxi- 
mation for Q‘. If we follow the same procedure for a generalisation of the Sullivan model 
that allows the wall-fluid potential to be shorter ranged than the attractive fluid-fluid 
potential (both exhibit exponential decay), we find, once more, that - 511. Beyond 
mean field, ford = 3, we combine (23b), (29) and (3) to obtain the linear RG predictions 

(1 + 2w)/(l + w)1’2 w G . l  

Q / E , I  - [2/(1 - ( w / t 3 ) l W 2  & < u s 2  (31) 6 2 < w. 

Ford  = 2, using the results of Burkhardt (1989) for l(=EL/2) and in (23b) we find 
that l j r /E, ,  = b. It appears that the ratio Er/gil , like Q, is independent of w in the strong- 
fluctuation regime. For the subsequent analysis it is sufficient to suppose that both Q 
and Er/El, are well behaved, i.e. finite and non-zero, as d +  3-. 

Before leaving this section we derive one further expression for gr/ell that will be 
used in section 3. From (22b), (25), (26) and (156) it follows that near the edge of the 
wetting film 

E i  = - oIlg( d l/d E )  2{ (d 2Z(s)/d e2  ) p ,  T - (d /a E )  [ ( dZ(s’/d E )  p %  j -  ] r, j - }  - (32) 
whilst near the wall the transverse correlation length is given by (236). The ratio of the 
two lengths is, therefore, 

( E ~ / E I I  I2  = 1 - ( d / a ~ >  [ ( d Z : f s ) / d ~ ) p ,  T I  r. T / ( d  2 Z ( S ) / d ~ 2  11, T (33) 

where derivatives are evaluated at y = p&. 

3. Relationship between critical amplitudes 

In this section we combine the formalism developed in section 2 with a standard scaling 
hypothesis for Z@) to deduce the behaviour of E L / l  as d + 3-. 

The scaling hypothesis for wetting transitions, proposed first by Nakanishi and Fisher 
(1982), is 

Z(S)/k,T- - W(6y S E - & )  

where dp = Ipsat - p l /kgT  measures the deviation of the chemical potential from its 
value at bulk coexistence, A(=(d + l)vi1/2) is a gap exponent and W is the scaling 
function. While this simple scaling form is believed to be valid for d < 3, modifications 
are required fo rd  = 3 (Parry and Evans 1989). For our present purposes it is necessary 
to include some metric factors, i.e. we write 

Z(S)/kBT= -Q CII - ( d - l ) E - ( d - l )  b SE(d-1 )u l l  W ( A  6 p  6 E - A )  (34) 

where we have invoked hyperscaling (27) and the definition (lb) of the critical amplitude 
ell. A is a dimensionless, presumably non-universal metric factor. The scaling function 
has been chosen so that W(0) = 1, i.e. (27) holds at 6 p  = 0. The first derivative W(0) 
and second derivative W”(0) should be finite constants. 

We now employ (34) to evaluate the singular part of the LHS of (25). The first term 
is straightforward: 
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(l/kBT) [a 2z(”/a (a&) 1 T ,  d p  = 0 

= -Q(d - l)vIl[(d - 1)~Il - l ] ~ r ( ~ - ’ ) l j b ( ~ - ~ )  ~ E ( ~ - ’ ) ’ I I - ~  (35) 

but the second term is somewhat more complicated since we need to take a derivative 
of 0 WRT E along a line of constant r or 1. 

Using (34) in the Gibbs adsorption equation (16) we have 

r x ij&(d-l)vii-AWr(A & & - A ) .  (36) 

Setting 8y = 0 it follows that the exponent for the film thickness is given by PS = 
- (d  - 1)vll + A ,  which reduces to (10). Inverting (36) and differentiating we find that 

[ a ( W a ( ~ P > l r , * y = O  = (A/Ps) [Wr’(O>/W’(O>l. (37) 

This result can now be used to evaluate the singular part of ( a@/d~) , - .  After some tedious 
algebra it can be shown that this quantity has the same exponent but a different amplitude 
from ( a @ / d ~ ) ~ ,  and that the total singular contribution to the LHS of (25) is 

kBTQci(d-l)E;(d-1) P s V  11  [ (3 - d)/2] { [ W’(o)] * /Wr ’ (0 ) }  l)’ \I-’ 

The leading singular contribution to the RHS of the same equation is, using (22b), 

a,,(al/a & ) 2  5 1 2  = o,gp:cfc;’ 8 E  -2(l + P J  +% 

Equating exponents in these last two expressions, we obtain P, = (3 - d)q/2,  i.e. we 
recover equation (10). The new result emerges from equating coefficients: 

[ W ’ (0) ] /Wr’(  0) = aig Etf - ’ C: C f; - / k ~  TQ . (38) 

This is an equation relating the critical amplitudes cI and ell; the same result can be derived 
using the scaling hypothesis to calculate (ar/ap),  and (22b) to relate the latter to E ] .  

As it stands, (38) is not particularly useful because the properties of the scaling 
function W are not known. However, the ratio of derivatives of W on the LHS can be 
eliminated in favour of a much more physically transparent quantity, i.e. the ratio 
<Eii“/ElI)’. 

Using the scaling hypothesis in (33) we find that 

(Ep/Eli>’ = [Wr(O)I2(3 - d)2vi~/W‘’(0)4(d - 1 ) ~  - l ) v l l  - 11. (39) 

So (38) can be written as 

<Ei i” /E$’  = ((3 - d)2q/4(d - 1) [ (d  - 1)vll - 111 
x (aig~db-’/QkBT)(c:/C~-d)(C:/C:). (40) 

This is the desired relationship between cl and til. We can check its validity for the d = 2 
continum solid on solid model mentioned earlier. In this case we have the explicit results 
(Burkhardt 1989): 

Q = l  c , / q  = t cl1 /c: = 2a1gEdkBT VI1 = 2 

and (40) gives Q“/Ell = f, the result obtained in section 2. Note that Burkhardt’s result 
(see also Huse 1987) for q/c: is identical with the standard (d = 2) capillary-wave result 
for the ratio Ell/E:. 
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In general, capillary-wave theory (Bedeaux and Weeks 1985) for the liquid-gas 
interface pinned by a gravitational field, say, predicts that 

= n ~ ] - ~ k ~ Z [ ( i )  - k / r ( i  - A) - ( i )ky2A/r ( i  + ~ ) ] / 2 ( 2 n ) ( ~ - ' ) / ~ a , ,  sin(An) (41) 

where r denotes the gamma function, A = (3 - d)/2 and y = &/Ell. Equation (41) is 
valid in the limit y -, 0; the bulk correlation length Eb is always of microscopic extent. 
For fixed A, i.e. fixed d,  and y 0, (41) yields 

- "/c: = (2a, ,g-  / n k B ~ )  ( 2 ~ t ) ( ~ -  l)I2 (1 )(3 - d ) / 2  

x sin{[(3 - d)/2]n} T((d - 1)/2) (42) 

which reduces to 20,,&,/kBTfor d = 2. In the limit d -+ 3-, (42) predicts that 

CTf-d /C:  + (2n/kBT) 01,Et(3 - d). (43) 

This will be valid provided that we can ignore the second term in (41), i.e. iff 
(Eli/g,)3-d S 1. If we now assume that (42) is appropriate for a critical wetting transition, 
for all d < 3, substituting (43) into (40) gives the following result for the ratio of critical 
amplitudes c,/cI : 

(Ei i" /El~) '  = q ( 3  - d)c?/l6nQ(2v11 - 1)~: d-, 3- (44) 
provided that (Ell/&,)3-d %- 1. This result can be rewritten as 

//EL = [32~dQ(l - l / 2 ~ ~ ~ ) 1 1 " ( E ~ / E ~ ~ ) ( 3  - d1-l'' d + 3 - .  (45) 

Equation (45) is the main result of this paper and we consider its implications. 
We argued at length in section 2 that the hyperscaling coefficient Q and the ratio 

Q"/gll of transverse correlation lengths should be well behaved as d -+ 3-. It follows that 

l/EL - [(I - 1/2q)/(3 - d>I''2 d + 3 - .  

Whether or not this ratio diverges depends on the value of the exponent vll. This is 
not given by the present formalism. There are two candidates? for ui,(d). The first is the 
non-linear RG result ( 5 )  of Lipowsky and Fisher which implies that ut1 -, x. as d -, 3-. 
With this choice 1/gL - (3 - d)-'/* as d-, 3-. The second candidate is the result of a 
procedure (see section 5 of I) that unfreezes Gaussian fluctuations on a mean-field 
density profile. This procedure, which can be viewed as a linearised treatment of 
fluctuations (see also appendix B of Lipowsky (1987)), gives the formula vll= 2/(3d - 5 )  
ford < 3. The same formula was obtained (Kroll and Lipowsky 1982), but for 3 < d 6 2, 
in an earlier approximate treatment of domain wall pinning. With this second choice, 
1/5, remains constant as d-, 3-. As such a scenario is difficult to reconcile with the 
d = 3 relation 1 - Et, we believe that this provides further evidence for the inadequacy 
of a linear theory in d < 3. Provided that vll approaches any number greater than 1, as 
d -+ 3-, l/EL diverges as (3 - d)-'''. 

We can go further and determine the form of the divergences of the individual critical 
amplitudes. From (43) we conclude that 

C~ - (3 - d)-'/' d +  3- (46a) 

provided that cll is less singular than exp[B(3 - d)Y] with q = -1, i.e. if cll diverges 

t See note added in proof. 
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algebraically or exponentially with q z- - 1. Supposing that this condition is met it follows 
that 

C] - (3 - d)-’ d+ 3- (46b) 

and 

c,  cc c: d+ 3-  

Interestingly, (46c) implies that the relative divergence of the critical amplitudes as 
d+ 3- is of the same form as that for the length scales (I - E : )  in d = 3. However, it is 
important to recall that our starting result (43) was qualified by the condition 
(,.!ll/Eb)3-d 9 1. Underthesame restrictionsoncilthatleadto (46), thiscondition reduces 
to 

8~ -e exp( - 1/0,) (47) 

where we have used the relation 0, = (3 - d)v!l/2.  If (47) is not met, the second term in 
(41) becomes significant. Equation (47) can be regarded as a type of Ginzburg criterion 
for the critical amplitudes. If vll diverges in the fashion suggested by the result ( 5 )  
obtained by Lipowsky and Fisher, bs vanishes as [-(3 - d )  ln(3 - d ) ]  V2 as d -+ 3- and 
the size of the critical region becomes vanishing small in this limit. 

It is tempting to speculate that a condition such as (47) should also be appropriate 
for the critical exponents. Outside the critical regime both terms in (41) are significant 
and we recover, for a fixed but large 511, the relation (quoted in (2)) 6; = 

1n(E11/Eb)2 in the limit d + 3T. Since this relation is the basis for the non-universality 
of critical wetting in d = 3, it is not unreasonable to suppose that for d 6 3 and 
8~ > exp(-1/Ds) the growth of I ,  EL and Eli will be described by non-universal 
‘exponents’ which extrapolate smoothly to the d = 3 results (3). 

4. Concluding remarks 

We have shown, on the basis of sum-rule arguments coupled with standard scaling and 
capillary-wave ideas, that the ratio of the wetting film thickness I to the interfacial 
roughness EL diverges as (3 - d )  -V2 as d approaches the upper critical dimension 3 from 
below. While I and diverge with the same critical exponent ( P s  = vl) in this strong- 
fluctuation regime the ratio of their critical amplitudes diverges as d + 3-. Although the 
fact that such a divergence should occur could have been anticipated on the grounds that 
it provides a sensible mechanism for a smooth crossover to the behaviour expected in 
higher dimensions (recall that I / E  -+ x as 8~ + Ofor d 3), the present results establish 
the form of the divergences of the individual amplitudes c ,  and cL ,  thereby enriching 
further the phenomenology of critical wetting transitions. The occurrence of critical 
exponents for critical amplitudes as d + 3- is remarkable. 

Since //EL diverges as d + 3-, one can argue that the degree of interfacial wandering 
is reduced as the dimension d increases. However, this does not necessarily imply that 
interfacial fluctuations become less important; the correlation length exponent vl l  is 
predicted by RG to diverge as d+ 3-! A fuller understanding of the nature of the 
fluctuations is required before we can ascertain whether the divergence of cI and c L, or 
of their ratio, is a consequence of the divergence of v 11 ,  or vice versa. Our analysis does 
point to the existence of a non-universal pre-critical regime in which the various length 
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scales behave similarly to those in d = 3. We find that the extent of the true critical region 
shrinks to zero as d + 3-, providing a means for smooth crossover to d = 3. 

Finally we note that it is possible to derive a formula similar to (45) by making a 
single eigenfunction approximation (see I) 

G i n g ( z l ,  2 2 )  G , ( z ~ ) G , ( z ~ )  

In the edge of the wetting film, G o ( z )  - p'(z)(k,TEf/a, , ) ' '* ,  (see (21(b)). Using this 
approximation in the sum rules (18) and (19) it follows that 

(a * m / a  E* ) p ,  T = - &*(a l/a E )  ;, (48) 
a result derived earlier by Henderson (1987). If we use the hyperscaling form (27) for 

(48) provides an equation for c ~ - ' / c :  which is converted to one for ( C , / C ~ ) ~  by 
using the capillary-wave result (43). The final result is identical with (45) apart from the 
factor E/i'/E 1 1 .  The single-eigenfunction approximation is equivalent to setting Er  = 511, 
i.e. neglecting the second term in (33). 
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Note added in proof. (i) Very recently David and Leibler (1990) have shown that an analytical treatment of 
the non-linear functional RG gives vi1 - (3 - d)-q3 rather than the numerical result (5). This does not 
alter any of our conclusions. (ii) It is interesting to note that complete wetting, from off bulk coexistence, can 
be analysed in a similar fashion. For short-ranged forces and d < 3 the exponents are known explicitly (see 
I): Y , I  = 2/(d + l ) ,  ps = (3 - d)/(d + 1) and vL = &,i.e.  5- - 1. Whend = 3thereisweaknon-universalitywith 
the exponents remaining unrenormalised from their mean-field values (vi1 = t ,  p, = 0) but with amplitudes 
and corrections to leading-order terms exhibiting dependence on w (Fisher and Huse 1985). At the upper 
critical dimension d, = 3 , l -  Et, as for critical wetting. The sum rule analysis of the critical amplitudes is much 
simpler for complete wetting. From (22b) we find c: 0~ psc/ and, hence c( - c;/(3 - d )  as d +  3Y. (Now 
1 = c,Eblbs;fls etc.) Given that yi approaches its d = 3 value smoothly from below it is natural to assume that cd 
remains finite as d-. 3-. Then c, diverges as (3 - d)-' reflecting directly the vanishing of the film thickness 
exponent ps as d +  3-. With the same assumptions as in the text, the capillary-wave relation (43) yields 
cL - (3 - d)-'I2 as d+ 3-. In summary we find l/EA = cI/cl - ( 3  - d)-'" for complete wetting in the limit 
d + 3-, provided cil remains finite. Just as for critical wetting, the existence of diverging amplitudes leads to a 
possible crossover mechanism for the 1 versus El relationship. 
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